You've already forked neighbours
add regressor
This commit is contained in:
49
demo/regressor_demo.py
Normal file
49
demo/regressor_demo.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import neighbours as ns
|
||||
|
||||
import numpy as np
|
||||
import random
|
||||
import math
|
||||
|
||||
|
||||
# function for generating a synthetic regression problem
|
||||
def f(x):
|
||||
if x > 40:
|
||||
return math.log(x, 2) - 6
|
||||
else:
|
||||
return math.cos(x * 0.1)
|
||||
|
||||
|
||||
# generate x coordinates
|
||||
X = [[i + random.uniform(-1, 1)] for i in np.arange(start=1, stop=100, step=1)]
|
||||
|
||||
# calculate corresponding y coordinates
|
||||
y = [f(i[0]) + random.uniform(-0.1, 0.1) for i in X]
|
||||
|
||||
# convert to numpy arrays
|
||||
X = np.array(X)
|
||||
y = np.array(y)
|
||||
|
||||
# generate x coordinates for demo plot
|
||||
x_points = np.arange(start=0, stop=100, step=0.1)
|
||||
X_demo = np.array([[x] for x in x_points])
|
||||
|
||||
# create a regressor then load data
|
||||
regressor = ns.KNNRegressor(1, 10, 7)
|
||||
regressor.load(X, y)
|
||||
|
||||
# create an array to store predicted y values for demo plot
|
||||
y_predicted = []
|
||||
|
||||
# get predictions for all samples in X_demo
|
||||
for sample in X_demo:
|
||||
predicted_value = regressor.predict(sample, ns.distance.euclidean, ns.kernel.gaussian, 3)
|
||||
y_predicted.append(predicted_value)
|
||||
|
||||
# plot train points
|
||||
plt.plot(X, y, 'bo')
|
||||
|
||||
# plot predicted y against x
|
||||
plt.plot(x_points, y_predicted, 'r')
|
||||
|
||||
plt.show()
|
||||
Reference in New Issue
Block a user