You've already forked neighbours
upd README.md
This commit is contained in:
38
README.md
38
README.md
@@ -47,3 +47,41 @@ w · x + b ≤ 0 point x is located "to the left"
|
||||
|
||||
Since nodes are organized into a tree, we can perform search by evaluating the expression and proceeding to the corresponding child node.
|
||||
|
||||
### Usage
|
||||
|
||||
Import the package, for example, as
|
||||
|
||||
```python
|
||||
import neighbours as ns
|
||||
```
|
||||
|
||||
Now you can use the classifier
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
# KNNClassifier(features, classes_count, trees_count, maximum number of samples in one leaf of an RP tree)
|
||||
classifier = ns.KNNClassifier(2, 3, 10, 7)
|
||||
|
||||
train = np.array([[2, 1], [10, 15], [1, 3] ...])
|
||||
class_labels = np.array([0, 1, 0 ...])
|
||||
|
||||
# load samples into classifier and build an RP forest
|
||||
classifier.load(train, class_labels)
|
||||
|
||||
# target object representation
|
||||
sample = np.array([1, 1])
|
||||
|
||||
# specify distance metric, smoothing kernel, window width and obtain a prediction
|
||||
prediction = classifier.predict(sample, ns.distance.euclidean, ns.kernel.gaussian, 1)
|
||||
|
||||
print(prediction)
|
||||
```
|
||||
|
||||
### Dependencies
|
||||
|
||||
The only third-party dependency is `numpy`.
|
||||
|
||||
### License
|
||||
|
||||
This project is licensed under [the MIT License](https://raw.githubusercontent.com/hashlag/neighbours/main/LICENSE)
|
||||
Reference in New Issue
Block a user