Files
neighbours/demo/regressor_demo.py
2024-02-04 21:20:00 +03:00

50 lines
1.1 KiB
Python

import neighbours as ns
import matplotlib.pyplot as plt
import numpy as np
import random
import math
# function for generating a synthetic regression problem
def f(x):
if x > 40:
return math.log(x, 2) - 6
else:
return math.cos(x * 0.1)
# generate x coordinates
X = [[i + random.uniform(-1, 1)] for i in np.arange(start=1, stop=100, step=1)]
# calculate corresponding y coordinates
y = [f(i[0]) + random.uniform(-0.1, 0.1) for i in X]
# convert to numpy arrays
X = np.array(X)
y = np.array(y)
# generate x coordinates for demo plot
x_points = np.arange(start=0, stop=100, step=0.1)
X_demo = np.array([[x] for x in x_points])
# create a regressor then load data
regressor = ns.KNNRegressor(1, 10, 7)
regressor.load(X, y)
# create an array to store predicted y values for demo plot
y_predicted = []
# get predictions for all samples in X_demo
for sample in X_demo:
predicted_value = regressor.predict(sample, ns.distance.euclidean, ns.kernel.gaussian, 3)
y_predicted.append(predicted_value)
# plot train points
plt.plot(X, y, 'bo')
# plot predicted y against x
plt.plot(x_points, y_predicted, 'r')
plt.show()